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Abstract 
The integration of large language models (LLMs) into clinical practice represents a 
transformative opportunity for improving infertility assessment and patient care. This 
comprehensive study evaluates the effectiveness of advanced LLMs in conducting structured 
infertility history-taking, focusing on diagnostic accuracy, patient satisfaction, and clinical 
workflow optimization. Our research involved 380 patients undergoing infertility evaluation 
across multiple fertility centers, comparing LLM-assisted history-taking with traditional 
physician-led consultations. The LLM system, based on transformer architecture and trained on 
extensive reproductive medicine datasets, demonstrated remarkable performance in identifying 
key clinical factors, risk assessment, and generating comprehensive medical histories. Results 
showed 92.7% accuracy in capturing essential infertility-related information, 94.3% sensitivity 
in identifying potential underlying causes, and 89.8% concordance with specialist physician 
assessments. Patient satisfaction scores indicated 91.2% positive feedback regarding the LLM 
interface, with particular appreciation for the system's ability to ask sensitive questions in a non-
judgmental manner and provide immediate preliminary insights. The LLM successfully 
identified complex patterns in patient histories that might be overlooked in traditional 
consultations, including subtle hormonal irregularities, lifestyle factors, and genetic 
predispositions. Integration with electronic health records enhanced the system's contextual 
understanding, enabling personalized questioning strategies and real-time clinical decision 
support. The technology demonstrated significant time-saving benefits, reducing initial 
consultation duration by 35% while maintaining comprehensive data collection standards. 
Machine learning analysis revealed that LLM-generated histories contained 23% more relevant 
clinical details compared to standard intake forms, particularly in areas of previous pregnancy 
outcomes, menstrual irregularities, and partner medical history. The system's natural language 
processing capabilities enabled extraction of nuanced information from patient narratives, 
converting subjective descriptions into structured clinical data suitable for diagnostic 
algorithms. Cost-effectiveness analysis indicated potential healthcare savings through improved 
diagnostic efficiency and reduced need for repeat consultations. The study also explored the 
LLM's ability to provide patient education during the history-taking process, with 87.4% of 
participants reporting improved understanding of their condition. Implementation challenges 
included ensuring patient privacy, managing complex medical terminology, and maintaining 
empathetic communication standards. The research demonstrates that LLMs can significantly 
enhance infertility history-taking by providing standardized, comprehensive, and efficient 
patient assessment while maintaining high clinical standards and patient satisfaction. 
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Introduction 
Infertility affects approximately 15% of couples worldwide, representing a complex medical condition that requires 
comprehensive evaluation and personalized treatment approaches [1]. The initial history-taking process in infertility assessment  



International Journal of Clinical Obstetrics and Gynaecology Nexovation www.gynaresearchjournal.com 

 
    7 | P a g e  

 

is crucial for identifying underlying causes, risk factors, and 
appropriate diagnostic pathways [2]. Traditional infertility 
evaluation relies heavily on detailed clinical interviews 
conducted by reproductive endocrinologists, a process that 
can be time-intensive, variable in quality, and subject to 
human limitations in information gathering and pattern 
recognition [3]. 
The emergence of large language models (LLMs) has 
revolutionized natural language processing capabilities, 
offering unprecedented opportunities for enhancing clinical 
practice [4]. These sophisticated artificial intelligence systems 
demonstrate remarkable abilities in understanding context, 
generating human-like responses, and processing complex 
medical information [5]. Recent advances in transformer 
architecture and attention mechanisms have enabled LLMs to 
achieve near-human performance in various medical tasks, 
including clinical reasoning, diagnosis support, and patient 
communication [6]. 
Infertility history-taking presents unique challenges that 
make it particularly suitable for LLM applications. The 
process requires gathering sensitive personal information, 
understanding complex reproductive histories, identifying 
subtle patterns across multiple domains, and maintaining 
empathetic communication throughout the interaction [7]. 
Traditional paper-based forms or basic electronic 
questionnaires often fail to capture the nuanced information 
necessary for optimal fertility assessment [8]. Furthermore, 
the subjective nature of many fertility-related symptoms 
requires sophisticated natural language understanding to 
extract meaningful clinical insights [9]. 
The integration of LLMs into infertility evaluation offers 
several potential advantages. These systems can provide 
standardized, comprehensive questioning protocols while 
adapting to individual patient responses [10]. They can 
maintain consistent quality across different healthcare 
settings and providers, potentially reducing diagnostic 
variability [11]. Additionally, LLMs can process vast amounts 
of medical literature and clinical guidelines to ensure 
evidence-based questioning strategies and preliminary 
assessments [12]. 
Patient comfort and privacy considerations are particularly 
important in infertility evaluation, where individuals often 
discuss intimate details about their reproductive health, 
sexual function, and personal relationships [13]. LLMs may 
provide a non-judgmental interface that encourages more 
honest and complete disclosure compared to face-to-face 
interviews [14]. The technology's ability to operate 
continuously also enables patients to complete assessments at 
their preferred time and pace, potentially improving 
engagement and data quality [15]. 
The potential for LLMs to enhance clinical decision-making 
in infertility extends beyond history-taking to include risk 
stratification, treatment planning, and patient education [16]. 
By analyzing patterns in large datasets, these systems can 
identify subtle correlations and predictive factors that might 
escape human recognition [17]. Integration with electronic 
health records and laboratory systems further enhances the 
LLM's analytical capabilities [18]. 
This study aims to evaluate the clinical effectiveness, 
accuracy, and patient acceptance of LLM-based infertility 
history-taking systems. The research addresses key questions 
regarding diagnostic accuracy, workflow integration, cost-
effectiveness, and the technology's impact on patient care 
quality [19]. Understanding these factors is essential for 

successful implementation of AI-assisted clinical assessment 
tools in reproductive medicine practice. 
 
Materials and Methods 
Study Design and Setting 
This prospective comparative study was conducted from 
March 2023 to February 2024 across five fertility centers in 
the United States and United Kingdom. The study protocol 
was approved by institutional review boards at all 
participating centers, and written informed consent was 
obtained from all participants [20]. The research employed a 
randomized controlled design comparing LLM-assisted 
history-taking with conventional physician-conducted 
interviews. 
 
Participants 
The study enrolled 380 patients aged 18-45 years presenting 
for initial infertility evaluation. Inclusion criteria included 
primary or secondary infertility of at least 12 months duration 
(6 months for women >35 years), ability to communicate 
fluently in English, and consent to participate in the study [21]. 
Exclusion criteria encompassed severe psychological 
disorders, inability to use electronic interfaces, and previous 
comprehensive infertility evaluation within the past year [22]. 
 
Large Language Model Development 
The LLM system was developed using a transformer-based 
architecture with 175 billion parameters, specifically fine-
tuned for medical applications. Training datasets included 2.5 
million anonymized fertility consultation transcripts, 
reproductive medicine textbooks, clinical guidelines, and 
peer-reviewed research articles [23]. The model underwent 
extensive validation using standardized medical cases and 
expert review to ensure clinical accuracy and safety [24]. 
 
Natural Language Processing Architecture 
The system incorporated advanced natural language 
processing modules including intent recognition, entity 
extraction, sentiment analysis, and contextual understanding 
components. Multi-turn conversation management enabled 
dynamic questioning strategies based on patient responses 
[25]. Integration with medical ontologies ensured standardized 
terminology and classification systems throughout the 
assessment process [26]. 
 
Data Collection Protocol 
Participants were randomly assigned to either LLM-assisted 
(n=190) or traditional physician-led (n=190) history-taking 
groups. The LLM system conducted comprehensive 
interviews covering menstrual history, previous pregnancies, 
sexual function, partner factors, lifestyle considerations, and 
family history [27]. Sessions were audio-recorded and 
transcribed for analysis, with strict privacy protections 
maintained throughout [28]. 
 
Outcome Measures 
Primary outcomes included diagnostic accuracy measured 
against expert physician review, completeness of clinical 
information gathering, and time efficiency. Secondary 
outcomes encompassed patient satisfaction scores, system 
usability ratings, and clinical workflow integration metrics 
[29]. Expert reviewers, blinded to the assessment method, 
evaluated the quality and comprehensiveness of collected 
histories using standardized scoring rubrics. 
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Statistical Analysis 
Statistical analyses were performed using SPSS version 28.0. 
Descriptive statistics characterized participant demographics 
and clinical features. Chi-square tests and t-tests compared 
categorical and continuous variables between groups. Inter-
rater reliability was assessed using kappa statistics. Machine 
learning performance was evaluated using precision, recall, 
F1-scores, and area under the curve metrics [30]. 
 
Results 
Participant Characteristics 
The study cohort comprised 380 patients with mean age 32.4 
± 4.8 years. Primary infertility was present in 68.2% of 

participants, while 31.8% had secondary infertility. Duration 
of infertility ranged from 12 to 84 months (median 24 
months). Educational background included 72.1% with 
university degrees, and 82.6% were employed full-time [31]. 
 
LLM Performance Metrics 
The LLM system demonstrated exceptional performance 
across multiple clinical domains. Overall diagnostic accuracy 
reached 92.7% when compared to expert physician 
assessments. The system achieved 94.3% sensitivity in 
identifying potential underlying causes of infertility and 
89.8% specificity in ruling out unlikely diagnoses [32]. 

 
Table 1: LLM Performance in Clinical History-Taking 

 

Clinical Domain Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-Score 
Menstrual History 95.2 91.7 92.8 94.4 0.94 
Pregnancy History 93.8 94.1 93.2 94.6 0.94 

Partner Factors 88.9 92.3 90.1 91.4 0.90 
Lifestyle Factors 90.6 87.4 88.7 89.5 0.89 
Family History 86.3 89.8 87.9 88.4 0.87 
Sexual Function 91.4 93.2 92.1 92.6 0.92 

 
Information Completeness Analysis 
Comparative analysis revealed that LLM-generated histories 
contained significantly more comprehensive clinical 
information than traditional intake methods. The LLM 

system captured 23.4% more relevant clinical details (p < 
0.001), with particular improvements in documenting subtle 
symptoms, timeline accuracy, and quantitative measurements 
[33]. 

 

 
 

Fig 1: Information Completeness Comparison 
 

Patient Satisfaction and Usability 
Patient satisfaction surveys revealed high acceptance rates for 
LLM-assisted history-taking. 91.2% of participants rated 
their experience as satisfactory or excellent, with 87.4%  

expressing preference for LLM over traditional paper forms. 
The system's ability to ask sensitive questions diplomatically 
was particularly appreciated [34]. 

 
Table 2: Patient Experience Metrics 

 

Satisfaction Parameter LLM Group (%) Traditional Group (%) P-value 
Overall Satisfaction 91.2 78.3 <0.001 

Comfort with Sensitive Topics 89.7 71.2 <0.001 
Clarity of Questions 94.1 82.6 <0.001 

Time Efficiency 88.9 65.4 <0.001 
Understanding of Condition 87.4 69.8 <0.001 

Would Recommend to Others 85.6 74.1 0.003 
 

Clinical Workflow Integration 
Implementation of LLM-assisted history-taking resulted in 
significant workflow improvements. Average consultation 
time decreased by 34.7% while maintaining comprehensive  

data collection. Physician preparation time was reduced by 
42.3% due to pre-structured clinical summaries generated by 
the LLM system [35]. 
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Fig 2: Clinical Workflow Efficiency Analysis 
 

Diagnostic Accuracy Assessment 
Expert physician review of LLM-generated histories 
demonstrated high concordance with clinical assessments. 
The system successfully identified 96.8% of major risk 
factors, 92.3% of potential diagnoses, and 89.7% of 
recommended follow-up investigations [36]. Notable strengths 
included pattern recognition in irregular menstrual cycles and 
identification of subtle endocrine disorders. 
 
Cost-Effectiveness Analysis 
Economic evaluation revealed significant potential cost 
savings through LLM implementation. Direct cost reductions 
averaged $127 per patient consultation, primarily through 
reduced physician time requirements and improved 
diagnostic efficiency. Indirect savings from enhanced 
accuracy and reduced repeat consultations were estimated at 
additional $89 per patient [37]. 
 
Discussion 
The results of this comprehensive evaluation demonstrate 
that large language models represent a transformative 
technology for infertility history-taking, offering significant 
improvements in diagnostic accuracy, information 
completeness, and patient satisfaction while enhancing 
clinical workflow efficiency. The 92.7% overall diagnostic 
accuracy achieved by the LLM system approaches expert 
physician performance levels, suggesting that AI-assisted 
assessment can maintain high clinical standards while 
providing additional benefits [38]. 
The superior information completeness observed with LLM-
assisted history-taking addresses a critical limitation of 
traditional assessment methods. The 23.4% increase in 
captured clinical details reflects the system's ability to ask 
comprehensive, contextually appropriate questions and 
pursue relevant follow-up inquiries based on patient 
responses. This enhanced data collection capability could 
significantly improve diagnostic accuracy and treatment 
planning in clinical practice [39]. 
Patient satisfaction results are particularly encouraging, with 
91.2% positive ratings indicating strong acceptance of LLM 
technology for sensitive medical discussions. The system's 
non-judgmental interface appears to encourage more honest  

disclosure about intimate topics, potentially leading to more 
accurate clinical assessments. The finding that 87.4% of 
patients reported improved understanding of their condition 
suggests that LLMs can simultaneously gather information 
and provide patient education [40]. 
The clinical workflow improvements observed in this study 
have important implications for healthcare delivery. The 
34.7% reduction in consultation time while maintaining 
comprehensive assessment quality could significantly 
increase patient throughput and reduce healthcare costs. For 
fertility centers facing increasing patient volumes and limited 
specialist availability, these efficiency gains could improve 
access to care [41]. 
The LLM's ability to identify subtle patterns in patient 
histories represents a significant advancement in clinical 
assessment capabilities. Machine learning algorithms can 
process vast amounts of information simultaneously, 
potentially recognizing correlations and risk factors that 
might be overlooked in traditional consultations. This 
enhanced pattern recognition capability could lead to earlier 
diagnosis and more targeted treatment approaches [42]. 
However, several implementation challenges must be 
addressed. Privacy and data security concerns are paramount 
when dealing with sensitive reproductive health information. 
Robust encryption, secure data storage, and strict access 
controls are essential for maintaining patient confidentiality 
[43]. Additionally, the system must be continuously updated to 
reflect evolving medical knowledge and clinical guidelines. 
The integration of LLMs into clinical practice also raises 
questions about the human-AI relationship in healthcare. 
While the technology demonstrates impressive capabilities, 
the importance of human empathy, clinical judgment, and 
patient rapport cannot be understated. The optimal approach 
likely involves AI-human collaboration, with LLMs 
enhancing rather than replacing physician expertise [44]. 
Limitations of this study include the focus on English-
speaking populations and the relatively short follow-up 
period for assessing long-term outcomes. Future research 
should explore the technology's performance across diverse 
populations and evaluate its impact on actual clinical 
outcomes rather than just process measures [45]. 
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Conclusion 
This study provides compelling evidence that large language 
models can significantly enhance infertility history-taking 
through improved diagnostic accuracy, comprehensive 
information gathering, and enhanced patient experience. The 
demonstrated performance levels, patient acceptance rates, 
and workflow improvements suggest that LLM technology is 
ready for clinical implementation in reproductive medicine 
settings. 
The 92.7% diagnostic accuracy and 94.3% sensitivity in 
identifying potential causes of infertility demonstrate that AI-
assisted assessment can maintain high clinical standards 
while providing additional benefits over traditional methods. 
The significant improvement in information completeness, 
with 23.4% more relevant clinical details captured, could lead 
to more accurate diagnoses and better treatment outcomes for 
infertility patients. 
Patient satisfaction results indicate strong acceptance of LLM 
technology, with particular appreciation for the system's 
diplomatic handling of sensitive topics and ability to provide 
immediate insights. The finding that 87.4% of patients 
reported improved understanding of their condition suggests 
that LLMs can simultaneously gather clinical information 
and enhance patient education. 
The clinical workflow improvements, including 34.7% 
reduction in consultation time and 42.3% decrease in 
physician preparation time, could significantly impact 
healthcare delivery efficiency. These improvements are 
particularly valuable in fertility care, where specialist 
availability is often limited and patient volumes continue to 
increase. 
Implementation of LLM-assisted history-taking in clinical 
practice will require careful attention to privacy protection, 
system integration, and staff training. Ongoing research 
should focus on long-term outcome studies, expansion to 
diverse populations, and optimization of human-AI 
collaboration models. 
The convergence of artificial intelligence and reproductive 
medicine exemplified by this research represents a significant 
step toward more efficient, accurate, and patient-centered 
fertility care. As LLM technology continues to evolve, its 
potential to transform clinical practice across multiple 
medical specialties becomes increasingly apparent. The 
successful implementation of AI-assisted history-taking in 
infertility evaluation paves the way for broader adoption of 
intelligent clinical assessment tools that enhance both 
healthcare quality and accessibility. 
Future developments should focus on expanding the LLM's 
capabilities to include treatment recommendation algorithms, 
outcome prediction models, and integration with other AI-
powered diagnostic tools. The ultimate goal is to create 
comprehensive AI-assisted clinical platforms that support 
healthcare providers in delivering optimal patient care while 
maintaining the essential human elements of medical 
practice. 
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