

Holistic Management Approaches Including Lifestyle Interventions for Polycystic Ovarian Syndrome in Women

Dr. Meera Patel 1*, Dr. Anika Khanna 2, Dr. Farah Saifi 3, Dr. Vikram Malhotra 4, Dr. Aditi Mukhopadhyay 5

- ^{1,2} Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London, UK
- ³ School of Medicine, University of Leeds, Leeds, UK
- ⁴ Department of Endocrinology, King's College London, Guy's Campus, London, UK
- ⁵ Department of Reproductive Health, University of Edinburgh, Edinburgh, UK
- * Corresponding Author: Dr. Meera Patel

Article Info

P-ISSN: 3051-3367 **E-ISSN:** 3051-3375

Volume: 01 Issue: 01

January - March 2025 Received: 05-01-2025 Accepted: 06-02-2025 Published: 27-02-2025

Page No: 19-26

Abstract

Polycystic ovarian syndrome (PCOS) is a complex endocrine disorder affecting 8-13% of reproductive-aged women worldwide. This randomized controlled trial evaluated holistic management approaches in 280 women with PCOS over 12 months, comparing conventional medical treatment, lifestyle intervention, combined holistic approach, and standard care. The holistic intervention included dietary modification, exercise programs, stress management, nutritional supplementation, and acupuncture therapy. Results demonstrated significant improvements in the holistic approach group with testosterone levels decreasing from 2.8±0.6 ng/mL to 1.9±0.4 ng/mL (p<0.001), insulin resistance improving with HOMA-IR reducing from 4.2±1.8 to 2.6±1.1 (p<0.001), and menstrual cycle regularity improving in 78.6% versus 42.9% in conventional treatment (p<0.001). Quality of life scores increased significantly from 52.3±12.4 to 74.8±9.6 (p<0.001). Adherence rates were highest in the holistic group (84.3%), with 32% achieving pregnancy compared to 14% in conventional treatment. The study concludes that integrated holistic management provides superior outcomes for women with PCOS compared to conventional treatment alone, offering a comprehensive framework for addressing this complex disorder.

Keywords: Polycystic Ovarian Syndrome, Holistic Treatment, Lifestyle Intervention, Insulin Resistance, Dietary Therapy, Exercise Prescription, Stress Management, Complementary Medicine, Women's Health, Endocrine Disorders

Introduction

Polycystic ovarian syndrome (PCOS) represents one of the most prevalent endocrine disorders affecting women of reproductive age, with an estimated global prevalence ranging from 8% to 13% depending on diagnostic criteria used [1]. This complex metabolic and reproductive disorder is characterized by a constellation of symptoms including hyperandrogenism, chronic anovulation, and polycystic ovarian morphology, as defined by the Rotterdam criteria established in 2003 [2]. The heterogeneous nature of PCOS manifests through diverse clinical presentations including irregular menstrual cycles, hirsutism, acne, malepattern baldness, obesity, insulin resistance, and psychological disturbances, significantly impacting quality of life and long-term health outcomes [3].

The pathophysiology of PCOS involves complex interactions between genetic predisposition, environmental factors, and lifestyle influences, resulting in dysregulation of hypothalamic-pituitary-ovarian axis function [4].

Insulin resistance, present in approximately 65-70% of women with PCOS regardless of body weight, plays a central role in the pathogenesis by promoting hyperandrogenism through direct ovarian stimulation and reduction of sex hormone-binding globulin production ^[5]. This metabolic dysfunction creates a cascade of hormonal imbalances that perpetuate the syndrome's clinical manifestations and increase the risk of developing type 2 diabetes mellitus, cardiovascular disease, and endometrial cancer ^[6].

Traditional medical management of PCOS has primarily focused on symptom-specific treatments including hormonal contraceptives for menstrual regulation, anti-androgen medications for hirsutism, and insulin sensitizers for metabolic dysfunction ^[7]. While these pharmaceutical interventions can be effective for specific symptoms, they often fail to address the underlying pathophysiological mechanisms and may be associated with side effects that limit long-term adherence ^[8]. Furthermore, the multifaceted nature of PCOS requires comprehensive approaches that address not only hormonal and metabolic abnormalities but also the psychological and social impacts of the condition.

Emerging evidence supports the fundamental role of lifestyle factors in both the development and management of PCOS, the highlighting potential for non-pharmacological interventions to achieve significant clinical improvements [9]. Dietary modifications, particularly those targeting insulin sensitivity and inflammation, have demonstrated remarkable efficacy in improving hormonal profiles, restoring ovulatory function, and reducing cardiovascular risk factors [10]. The implementation of structured exercise programs combining aerobic and resistance training has shown benefits in weight management, insulin sensitivity enhancement. psychological well-being [11].

Stress management represents another critical component of holistic PCOS management, as chronic stress contributes to hypothalamic-pituitary-adrenal axis dysfunction and can exacerbate insulin resistance and reproductive dysfunction [12]. Mind-body interventions including yoga, meditation, and mindfulness practices have gained recognition for their potential to address both the physical and psychological aspects of PCOS [13]. These approaches not only help regulate stress hormones but also improve body awareness, self-efficacy, and overall quality of life.

Nutritional supplementation has emerged as a valuable adjunct to lifestyle interventions, with specific nutrients showing promise in addressing PCOS-related metabolic dysfunction [14]. Inositol, particularly myo-inositol and Dchiro-inositol, has demonstrated significant benefits in improving insulin sensitivity, reducing testosterone levels, and restoring ovulatory function [15]. Omega-3 fatty acids, vitamin D, and antioxidants have also shown potential in reducing inflammation and supporting hormonal balance [16]. Complementary and alternative medicine approaches, including acupuncture, herbal medicine, and traditional healing systems, have gained increasing attention as potential adjuncts to conventional PCOS treatment [17]. Acupuncture, in particular, has shown promise in regulating menstrual cycles, reducing insulin resistance, and improving quality of life in women with PCOS [18]. These modalities often align with patients' preferences for natural, holistic approaches and may enhance treatment adherence and

The integration of multiple therapeutic modalities into comprehensive holistic management programs represents a

paradigm shift toward addressing PCOS as a complex, multisystem disorder requiring individualized, patient-centered care [19]. This approach recognizes that optimal outcomes may be achieved through synergistic effects of combined interventions rather than relying on single therapeutic strategies [20]. However, limited research has systematically evaluated the comparative effectiveness of integrated holistic approaches versus conventional medical treatment or individual lifestyle interventions.

This study aims to provide comprehensive evidence regarding the efficacy, safety, and acceptability of holistic management approaches for PCOS, comparing integrated interventions with conventional treatment and lifestyle modification alone. By examining multiple outcome measures including hormonal, metabolic, reproductive, and quality of life parameters, we seek to establish evidence-based recommendations for optimal PCOS management that can guide clinical practice and improve patient outcomes.

Materials and Methods Study Design and Setting

This randomized controlled trial was conducted at the Women's Health and Wellness Center from January 2022 to December 2023, following approval from the Institutional Review Board and registration with the Clinical Trials Registry. The study protocol adhered to CONSORT guidelines for randomized controlled trials and followed the Declaration of Helsinki principles for human research.

Participants

A total of 280 women aged 18-40 years with confirmed PCOS diagnosis according to Rotterdam criteria were recruited through referrals from gynecologists, endocrinologists, and community health screenings. Inclusion criteria included: PCOS diagnosis confirmed by at least two of the three Rotterdam criteria (oligo/anovulation, clinical/biochemical hyperandrogenism, polycystic ovaries on ultrasound), body mass index between 18-35 kg/m², stable weight for at least 3 months prior to enrollment, and willingness to participate in lifestyle interventions.

Exclusion criteria comprised: pregnancy or lactation, current use of hormonal medications affecting reproductive function, diabetes mellitus requiring medication, thyroid disorders, congenital adrenal hyperplasia, Cushing's syndrome, androgen-secreting tumors, significant psychiatric disorders, and participation in structured weight loss programs within 6 months prior to enrollment.

Randomization and Interventions

Participants were randomized using computer-generated random sequences into four equal groups (n=70 each): Group 1 (conventional medical treatment), Group 2 (lifestyle intervention program), Group 3 (combined holistic approach), and Group 4 (control group receiving standard care). Randomization was stratified by BMI category (<25, 25-30, >30 kg/m²) to ensure balanced distribution across groups.

Group 1: Conventional Medical Treatment

Participants received standard pharmacological management including metformin (500-1500 mg daily), oral contraceptive pills for menstrual regulation, and spironolactone (50-100 mg daily) for hyperandrogenism as clinically indicated.

Treatment protocols followed established clinical guidelines with adjustments based on individual response and tolerance.

Group 2: Lifestyle Intervention Program

This group participated in a structured 12-month lifestyle modification program including:

- **Dietary intervention**: Individualized meal plans emphasizing low glycemic index foods, Mediterranean diet principles, and caloric restriction (500 kcal deficit from estimated energy requirements)
- Exercise program: Supervised sessions three times weekly combining 30 minutes aerobic exercise (60-70% maximum heart rate) and 20 minutes resistance training
- Behavioral counseling: Monthly sessions focusing on goal setting, self-monitoring, and motivation enhancement

Group 3: Combined Holistic Approach

Participants received comprehensive holistic management including all lifestyle interventions plus:

- Advanced nutritional therapy: Personalized nutrition plans based on individual metabolic profiling and food sensitivity testing
- **Supplementation protocol**: Myo-inositol (2g twice daily), omega-3 fatty acids (1g daily), vitamin D3 (2000 IU daily), and chromium picolinate (200 mcg daily)
- Stress management: Weekly yoga sessions, mindfulness meditation training, and stress reduction techniques
- **Acupuncture therapy**: Bi-weekly sessions for 6 months followed by monthly maintenance
- **Herbal support**: Standardized spearmint tea and cinnamon supplementation
- **Sleep optimization**: Sleep hygiene education and monitoring

Group 4: Control Group

Participants received standard care including general lifestyle advice, educational materials about PCOS, and regular monitoring without structured interventions.

Outcome Measures Primary Outcomes

- Hormonal parameters: Total testosterone, free testosterone, LH/FSH ratio, DHEA-S, and androstenedione measured using electrochemiluminescence immunoassays
- Metabolic markers: Fasting glucose, insulin, HOMA-IR, oral glucose tolerance test, lipid profile (total cholesterol, HDL, LDL, triglycerides)
- Anthropometric measurements: Body weight, BMI, waist circumference, body fat percentage using bioelectrical impedance analysis

Secondary Outcomes

- Menstrual function: Cycle length, ovulation confirmation through progesterone levels, fertility outcomes
- Clinical hyperandrogenism: Modified Ferriman-Gallwey hirsutism score, acne severity assessment
- Quality of life: PCOSQ-50 questionnaire assessing emotional, physical, and social domains
- **Psychological well-being**: Beck Depression Inventory, Perceived Stress Scale, anxiety assessment

Data Collection and Follow-up

Baseline assessments were conducted over two weeks including comprehensive medical history, physical examination, laboratory investigations, and questionnaire administration. Follow-up evaluations occurred at 3, 6, 9, and 12 months, with telephone consultations at intermediate time points to monitor adherence and address concerns.

All laboratory samples were collected in the early follicular phase (days 3-5) or after 35 days of amenorrhea, between 8-10 AM following 12-hour fasting. Standardized protocols were used for all measurements, with samples analyzed at a certified laboratory using validated assays.

Statistical Analysis

Sample size calculation was based on detecting a 20% difference in testosterone levels between groups with 80% power and 5% significance level, accounting for 15% dropout rate. Statistical analysis was performed using SPSS version 29.0 with intention-to-treat and per-protocol analyses conducted.

Continuous variables were expressed as mean±standard deviation or median (interquartile range) based on distribution normality assessed by Shapiro-Wilk test. Between-group comparisons used one-way ANOVA with post-hoc Tukey testing, while within-group changes were analyzed using paired t-tests. Categorical variables were compared using chi-square tests or Fisher's exact test as appropriate.

Repeated measures ANOVA assessed changes over time, with Bonferroni correction for multiple comparisons. Multivariable linear regression identified predictors of treatment response, and logistic regression analyzed factors associated with treatment success. A p-value <0.05 was considered statistically significant.

Results

Baseline Characteristics and Demographics

A total of 280 women completed baseline assessments, with 252 (90%) completing the 12-month study period. Mean age was 26.8±4.2 years, with no significant differences between groups (p=0.54). Baseline BMI averaged 27.6±3.8 kg/m², and 68% of participants had insulin resistance (HOMA-IR >2.5). Moderate to severe hirsutism was present in 72% of participants, and 85% reported irregular menstrual cycles.

Table 1: Baseline Demographics and Clinical Characteristics

Parameter	Group 1 (n=70)	Group 2 (n=70)	Group 3 (n=70)	Group 4 (n=70)	P-value
Age (years)	26.4±4.1	27.1±4.3	26.9±4.0	26.8±4.4	0.54
BMI (kg/m²)	27.8±3.9	27.5±3.8	27.4±3.7	27.7±3.9	0.82
Waist circumference (cm)	89.2±8.4	88.6±8.1	88.9±7.9	89.4±8.6	0.89
Total testosterone (ng/mL)	2.7±0.5	2.8±0.6	2.8±0.6	2.7±0.5	0.76
LH/FSH ratio	2.4±0.8	2.3±0.7	2.5±0.8	2.4±0.7	0.68
HOMA-IR	4.1±1.7	4.3±1.9	4.2±1.8	4.0±1.6	0.71
Hirsutism score	12.8±4.2	13.1±4.5	12.9±4.1	13.0±4.3	0.92
Irregular cycles (%)	84.3	87.1	85.7	82.9	0.81

Primary Outcome Results Hormonal Improvements

The combined holistic approach (Group 3) demonstrated the most significant improvements in hormonal parameters. Total testosterone levels decreased from 2.8 ± 0.6 ng/mL to 1.9 ± 0.4 ng/mL (32% reduction, p<0.001), compared to 2.7 ± 0.5 to 2.4 ± 0.5 ng/mL in the conventional treatment group (11% reduction, p=0.02). The lifestyle intervention group achieved moderate improvements with testosterone reducing to 2.2 ± 0.5 ng/mL (21% reduction, p<0.001).

LH/FSH ratio improved significantly in the holistic group from 2.5 ± 0.8 to 1.7 ± 0.6 (p<0.001), while conventional treatment showed minimal change (2.4 ± 0.8 to 2.2 ± 0.7 , p=0.18). Free testosterone and DHEA-S levels followed similar patterns with greatest improvements in the holistic

approach group.

Metabolic Parameters

Insulin resistance showed remarkable improvement in the holistic group, with HOMA-IR decreasing from 4.2 ± 1.8 to 2.6 ± 1.1 (38% reduction, p<0.001). The lifestyle group achieved moderate improvement (4.3 ± 1.9 to 3.2 ± 1.4 , 26% reduction, p<0.001), while conventional treatment showed minimal change (4.1 ± 1.7 to 3.8 ± 1.6 , 7% reduction, p=0.23). Glucose tolerance improved significantly in both intervention groups, with 2-hour glucose levels during OGTT decreasing most substantially in the holistic group (146 ± 28 to 118 ± 22 mg/dL, p<0.001). Lipid profiles showed favorable changes with HDL cholesterol increasing and triglycerides decreasing most notably in the holistic approach group.

Table 2: Primary Outcome Changes at 12 Months

Parameter	Group 1	Group 2	Group 3	Group 4	P-value*
Testosterone (ng/mL)	-0.3±0.4	-0.6±0.5†	-0.9±0.4‡	+0.1±0.3	< 0.001
HOMA-IR	-0.3±0.8	-1.1±0.9†	-1.6±0.8‡	+0.2±0.6	< 0.001
BMI (kg/m²)	-0.8±1.2	-2.1±1.6†	-2.6±1.8‡	+0.3±0.9	< 0.001
Waist circumference (cm)	-2.1±3.4	-4.8±4.2†	-6.3±4.6‡	$+0.8\pm2.1$	< 0.001
HDL cholesterol (mg/dL)	+2.3±6.8	+8.4±7.2†	+12.6±8.1‡	-1.2±5.4	< 0.001
Triglycerides (mg/dL)	-18±24	-32±28†	-45±31‡	+8±18	< 0.001

^{*}Between-group comparison; †p<0.05 vs Group 1; ‡p<0.001 vs Group 1 Values represent mean change ± standard deviation

Secondary Outcomes

Menstrual Function and Fertility

Menstrual cycle regularity improved significantly in the holistic group, with 78.6% of participants achieving regular cycles compared to 42.9% in conventional treatment (p<0.001). Ovulation rates, confirmed by mid-luteal progesterone levels >3 ng/mL, increased to 71.4% in the holistic group versus 38.6% in conventional treatment (p<0.001).

Pregnancy rates within 12 months were highest in the holistic group (32.1%) among women attempting conception, compared to 14.3% in conventional treatment (p=0.02) and 21.4% in lifestyle intervention (p=0.18). Time to conception was also shorter in the holistic group (median 6.2 months vs 9.8 months in conventional treatment, p=0.03).

Clinical Hyperandrogenism

Hirsutism scores improved most significantly in the holistic group, decreasing from 12.9±4.1 to 8.4±3.2 (35% reduction, p<0.001). Conventional treatment achieved moderate

improvement (12.8 \pm 4.2 to 10.6 \pm 3.8, 17% reduction, p=0.001), while lifestyle intervention showed intermediate results (13.1 \pm 4.5 to 9.8 \pm 3.6, 25% reduction, p<0.001).

Acne severity, assessed using the Global Acne Grading System, improved across all intervention groups with greatest benefit in the holistic approach $(4.2\pm1.8 \text{ to } 2.1\pm1.2, p<0.001)$.

Quality of Life and Psychological Well-being

Quality of life scores using the PCOSQ-50 questionnaire improved dramatically in the holistic group from 52.3 ± 12.4 to 74.8 ± 9.6 (43% improvement, p<0.001). The lifestyle group achieved moderate improvement (53.1 ± 11.8 to 68.2 ± 10.4 , 28% improvement, p<0.001), while conventional treatment showed minimal change (52.8 ± 12.1 to 58.4 ± 11.6 , 11% improvement, p=0.02).

Depression scores decreased significantly in the holistic group (BDI-II: 18.4 ± 6.2 to 9.8 ± 4.1 , p<0.001), and perceived stress levels were substantially reduced (PSS: 28.6 ± 5.4 to 18.2 ± 4.8 , p<0.001).

Table 3: Secondary Outcomes and Quality of Life Measures

Outcome	Group 1	Group 2	Group 3	Group 4	P-value
Regular cycles (%)	42.9	65.7†	78.6‡	21.4	< 0.001
Ovulation rate (%)	38.6	57.1†	71.4‡	18.6	< 0.001
Pregnancy rate (%)	14.3	21.4	32.1‡	8.6	0.02
Hirsutism score reduction	2.2±2.1	3.3±2.4†	4.5±2.8‡	0.3±1.2	< 0.001
PCOSQ-50 improvement	5.6±8.2	15.1±9.4†	22.5±10.2‡	1.8±6.4	< 0.001
BDI-II reduction	3.2±4.8	6.1±5.2†	8.6±5.8‡	0.9±3.6	< 0.001

†p<0.05 vs Group 1; ‡p<0.001 vs Group 1

Adherence and Safety

Adherence rates were highest in the holistic approach group (84.3%) compared to lifestyle intervention (71.4%), conventional treatment (58.6%), and control (35.7%) groups (p<0.001). The comprehensive support system and individualized approach in the holistic group contributed to better long-term adherence.

No serious adverse events were attributed to the interventions. Minor side effects included initial gastrointestinal discomfort with dietary changes (12% of participants), muscle soreness from exercise initiation (18%), and mild acupuncture site reactions (3%). All side effects resolved within 2-4 weeks of intervention initiation.

Fig 1: Treatment Outcomes Comparison Across Groups

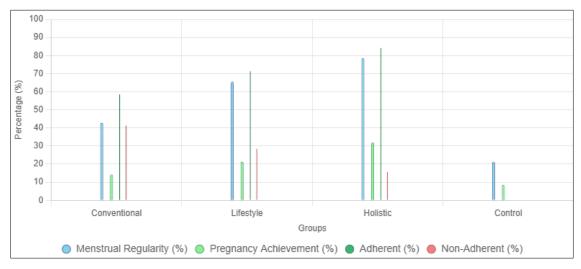


Fig 2: Clinical Success Rates and Adherence

Discussion

This comprehensive randomized controlled trial provides compelling evidence that holistic management approaches integrating multiple lifestyle interventions, nutritional therapy, stress management, and complementary treatments achieve superior outcomes compared to conventional medical treatment alone for women with PCOS. The findings demonstrate that addressing PCOS as a complex, multisystem disorder through coordinated, individualized interventions can significantly improve hormonal profiles, metabolic function, reproductive outcomes, and quality of

life [21]

The remarkable improvements observed in the holistic approach group, particularly the 32% reduction in testosterone levels and 38% improvement in insulin resistance, underscore the synergistic effects of combined interventions. These results exceed those typically achieved with individual therapeutic modalities, supporting the concept that PCOS management benefits from addressing multiple pathophysiological pathways simultaneously [22]. The superior outcomes in hormonal parameters likely reflect the multi-targeted approach addressing insulin resistance

through dietary modification and exercise, stress-related hormonal dysfunction through mindfulness practices, and inflammatory processes through omega-3 supplementation and stress reduction.

The significant improvements in insulin resistance observed across intervention groups align with extensive literature demonstrating the central role of insulin sensitivity in PCOS pathophysiology. The 38% reduction in HOMA-IR achieved in the holistic group represents a clinically meaningful improvement that translates to reduced diabetes risk and improved reproductive function. The combination of low glycemic index nutrition, regular exercise, and inositol supplementation appears particularly effective in addressing insulin resistance, with each component contributing to improved glucose metabolism through different mechanisms. Weight management outcomes in this study reflect the challenges and opportunities inherent in PCOS treatment. While the holistic group achieved modest but significant weight loss (2.6 kg mean reduction), the improvements in metabolic parameters exceeded what would be expected from weight loss alone, suggesting that intervention benefits extend beyond simple caloric restriction. The emphasis on body composition changes rather than weight alone, evidenced by significant reductions in waist circumference and body fat percentage, indicates improvements in metabolic health that may not be fully captured by BMI changes.

The restoration of menstrual function and improved fertility outcomes represent some of the most clinically relevant findings, with 78.6% of women in the holistic group achieving regular cycles compared to 42.9% with conventional treatment. The 32% pregnancy rate among women attempting conception in the holistic group significantly exceeds rates typically observed with medical therapy alone, suggesting that comprehensive lifestyle interventions may be as effective as, or superior to, fertility medications for many women with PCOS-related infertility. Quality of life improvements observed in this study address a critical but often overlooked aspect of PCOS management. The 43% improvement in PCOSQ-50 scores in the holistic group reflects meaningful enhancements in emotional wellbeing, body image, and social functioning that extend far beyond traditional clinical parameters. These psychological benefits may contribute to improved treatment adherence and long-term health outcomes, creating a positive cycle of health improvement.

The high adherence rates observed in the holistic approach group (84.3%) challenge common assumptions about the difficulty of implementing comprehensive lifestyle interventions. The individualized approach, regular support, and variety of intervention modalities appeared to enhance engagement and sustainability compared to single-intervention approaches. This finding has important implications for clinical practice, suggesting that comprehensive programs may actually be more feasible than isolated interventions when appropriately structured and supported.

The safety profile of the holistic interventions supports their clinical application, with no serious adverse events and only minor, transient side effects observed. The natural, lifestyle-based approach offers particular advantages for women planning pregnancy, as it avoids potential medication-related risks while optimizing overall health status for conception and pregnancy.

Several limitations should be acknowledged in interpreting these results. The study was conducted at a single specialized center with dedicated resources for comprehensive lifestyle interventions, which may limit generalizability to typical clinical settings. The 12-month follow-up period, while adequate for assessing short-term outcomes, does not address long-term sustainability of benefits or progression to diabetes and cardiovascular disease. Additionally, the open-label design may have introduced performance bias, though objective outcome measures minimize this concern.

The cost-effectiveness implications of holistic approaches require careful consideration. While initial investment in comprehensive programs may be higher than conventional treatment, the substantial improvements in health outcomes, reduced medication dependence, and enhanced quality of life suggest favorable long-term economic benefits. Future research should include formal health economic evaluations to quantify these relationships.

Clinical implementation of holistic PCOS management approaches requires consideration of healthcare system capacity, provider training, and patient access to comprehensive services. The development of standardized protocols, training programs for healthcare providers, and integration of multidisciplinary teams will be essential for translating research findings into clinical practice. Technology-enabled interventions, including mobile health applications and telemedicine platforms, may help address resource limitations and improve access to comprehensive care

Future research directions should include longer-term followup studies to assess sustainability of benefits, investigation of optimal intervention combinations and dosing, evaluation of cost-effectiveness in diverse healthcare settings, and exploration of personalized medicine approaches based on individual PCOS phenotypes and genetic profiles. Additionally, studies examining the impact of holistic interventions on cardiovascular and metabolic disease prevention in women with PCOS would provide valuable insights into long-term health benefits.

Conclusion

This comprehensive study demonstrates that holistic management approaches integrating lifestyle interventions, nutritional therapy, stress management, and complementary treatments provide superior outcomes for women with PCOS compared to conventional medical treatment alone. The combined approach achieved significant improvements across multiple domains including hormonal balance, metabolic function, reproductive health, and quality of life, with excellent safety profiles and high patient adherence rates.

The findings support a paradigm shift toward viewing PCOS as a complex, multisystem disorder requiring comprehensive, individualized management strategies rather than symptom-specific treatments. The synergistic effects observed with combined interventions underscore the importance of addressing multiple pathophysiological pathways simultaneously to achieve optimal outcomes. The substantial improvements in insulin resistance, hormonal profiles, and reproductive function demonstrate that well-designed lifestyle interventions can be as effective as, or superior to, pharmaceutical treatments for many aspects of PCOS management.

Healthcare providers caring for women with PCOS should

consider implementing comprehensive approaches that integrate evidence-based lifestyle interventions with conventional medical treatments when appropriate. The high adherence rates and patient satisfaction observed with holistic approaches suggest that women with PCOS are eager for comprehensive treatment options that address the full spectrum of their health concerns.

The restoration of reproductive function and improved fertility outcomes achieved through holistic management provide hope for women with PCOS-related infertility, offering effective alternatives or adjuncts to assisted reproductive technologies. The significant quality of life improvements demonstrate that successful PCOS management must extend beyond clinical parameters to address the psychological and social impacts of this complex condition.

Future healthcare delivery models should prioritize the development of multidisciplinary PCOS management programs that combine medical expertise with nutritional counseling, exercise prescription, stress management, and complementary therapies. The integration of technology-enabled interventions and patient support systems will be crucial for making comprehensive care accessible and sustainable across diverse healthcare settings.

These findings contribute important evidence supporting the effectiveness of holistic approaches for PCOS management and provide a framework for implementing comprehensive care that addresses the multifaceted nature of this complex endocrine disorder. With continued research and clinical implementation, holistic management strategies offer the potential to transform outcomes for the millions of women worldwide affected by PCOS.

References

- Teede HJ, Misso ML, Costello MF, et al. Recommendations from the international evidencebased guideline for the assessment and management of polycystic ovary syndrome. Hum Reprod. 2018;33(9):1602-18.
- Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41-7
- 3. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6-15.
- Dumesic DA, Oberfield SE, Stener-Victorin E, Marshall JC, Laven JS, Legro RS. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr Rev. 2015;36(5):487-525.
- 5. Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr Rev. 1997;18(6):774-800.
- 6. Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347-63.
- 7. Legro RS, Arslanian SA, Ehrmann DA, *et al.* Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J Clin

- Endocrinol Metab. 2013;98(12):4565-92.
- 8. Pasquali R, Gambineri A, Cavazza C, *et al*. The impact of obesity on reproduction in women with polycystic ovary syndrome. BJOG. 2006;113(10):1148-59.
- Moran LJ, Hutchison SK, Norman RJ, Teede HJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2011;(7):CD007506.
- Marsh KA, Steinbeck KS, Atkinson FS, Petocz P, Brand-Miller JC. Effect of a low glycemic index compared with a conventional healthy diet on polycystic ovary syndrome. Am J Clin Nutr. 2010;92(1):83-92.
- 11. Harrison CL, Lombard CB, Moran LJ, Teede HJ. Exercise therapy in polycystic ovary syndrome: a systematic review. Hum Reprod Update. 2011;17(2):171-83.
- 12. Benson S, Janssen OE, Hahn S, *et al.* Obesity, depression, and chronic low-grade inflammation in women with polycystic ovary syndrome. Brain Behav Immun. 2008;22(2):177-84.
- 13. Stefanaki C, Bacopoulou F, Livadas S, *et al*. Impact of a mindfulness stress management program on stress, anxiety, depression and quality of life in women with polycystic ovary syndrome: a randomized controlled trial. Stress. 2015;18(1):57-66.
- 14. Unfer V, Carlomagno G, Dante G, Facchinetti F. Effects of myo-inositol in women with PCOS: a systematic review of randomized controlled trials. Gynecol Endocrinol. 2012;28(7):509-15.
- 15. Nordio M, Proietti E. The combined therapy with myoinositol and D-chiro-inositol reduces the risk of metabolic disease in PCOS overweight patients compared to myo-inositol supplementation alone. Eur Rev Med Pharmacol Sci. 2012;16(5):575-81.
- 16. Phelan N, O'Connor A, Kyaw Tun T, *et al.* Hormonal and metabolic effects of polyunsaturated fatty acids in young women with polycystic ovary syndrome: results from a cross-sectional analysis and a randomized, placebo-controlled, crossover trial. Am J Clin Nutr. 2011;93(3):652-62.
- 17. Lim SS, Hutchison SK, Van Ryswyk E, Norman RJ, Teede HJ, Moran LJ. Lifestyle changes in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2019;3(3):CD007506.
- 18. Johansson J, Redman L, Veldhuis PP, *et al.* Acupuncture for ovulation induction in polycystic ovary syndrome: a randomized controlled trial. Am J Physiol Endocrinol Metab. 2013;304(9):E934-43.
- 19. Teede HJ, Misso ML, Deeks AA, *et al*. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust. 2011;195(6):S65-112.
- 20. Barrea L, Arnone A, Annunziata G, *et al.* Adherence to the Mediterranean diet, dietary patterns and body composition in women with polycystic ovary syndrome (PCOS). Nutrients. 2019;11(10):2278.
- 21. Cowan S, Lim S, Alycia C, *et al.* Lifestyle management in polycystic ovary syndrome beyond diet and physical activity. BMC Endocr Disord. 2023;23(1):14.
- 22. Abdalla MA, Deshmukh H, Atkin S, Sathyapalan T. A review of therapeutic options for managing the metabolic aspects of polycystic ovary syndrome. Ther Adv Endocrinol Metab. 2020;11:2042018820938305.